Microbiota in Gut-Heart Axis: Metabolites and Mechanisms in Cardiovascular Disease Article (Faculty180)

cited authors

  • Kondapalli, Narendra; Katari, Venkatesh; Dalal, Kesha K; Paruchuri, Sailaja; Thodeti, Charles K

description

  • Emerging evidence highlights the pivotal role of gut microbiota in regulating cardiovascular health and disease. The gut microbiota, a diverse community of microorganisms residing in the gastrointestinal tract, interacts with its host through metabolites, immune modulation, and systemic signaling pathways, collectively shaping cardiovascular physiology. Dysbiosis, or an imbalance in gut microbial composition, has been linked to various cardiovascular diseases (CVDs), including hypertension, heart failure and atherosclerosis. Key microbial metabolites such as short-chain fatty acids (SCFAs), trimethylamine N-oxide (TMAO) and lipopolysaccharides (LPS) have been implicated in mechanisms involving endothelial, cardiac fibroblast, cardiomyocyte dysfunction, systemic inflammation, and metabolic dysregulation. This review explores the dynamic interplay between the gut and the heart, focusing on: gut microbiota composition and its alterations in CVD; microbial-derived metabolites and their mechanistic roles in cardiovascular pathophysiology; pathways linking gut dysbiosis to endothelial, cardiac fibroblast and cardiomyocyte dysfunction, inflammation, and immune responses; and therapeutic opportunities targeting the gut-heart axis, including dietary interventions, prebiotics, probiotics and emerging microbiota-based strategies. By unraveling these intricate relationships, we aim to provide a comprehensive understanding of how gut microbiota shape CVD pathophysiology and discuss potential avenues for novel therapeutics in precision medicine.

publication date

  • 2025

published in

start page

  • e70024

volume

  • 15