Mechanosensitive transient receptor potential vanilloid 4 regulates -induced airway remodeling 2 distinct pathways modulating matrix synthesis and degradation Article (Faculty180)
Overview
cited authors
- Gombedza, Farai; Kondeti, Vinay; Al-Azzam, Nosayba; Koppes, Stephanie; Duah, Ernest; Patil, Prachi; Hexter, Madison; Phillips, Daniel; Thodeti, Charles K; Paruchuri, Sailaja
description
- Contributions of mechanical signals to airway remodeling during asthma are poorly understood. Transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive ion channel, has been implicated in cardiac and pulmonary fibrosis; however, its role in asthma remains elusive. Employing a -induced asthma model, we report here that TRPV4-knockout mice were protected from -induced airway remodeling. Furthermore, lung fibroblasts that were isolated from TRPV4-knockout mice showed diminished differentiation potential compared with wild-type mice. Fibroblasts from asthmatic lung exhibited increased TRPV4 activity and enhanced differentiation potential compared with normal human lung fibroblasts. Of interest, TGF-β1 treatment enhanced TRPV4 activation in a PI3K-dependent manner in normal human lung fibroblasts Mechanistically, TRPV4 modulated matrix remodeling in the lung 2 distinct but dependent pathways: one enhances matrix deposition by fibrotic gene activation, whereas the other slows down matrix degradation by increased plasminogen activator inhibitor 1. Of importance, both pathways are regulated by Rho/myocardin-related transcription factor-A and contribute to fibroblast differentiation and matrix remodeling in the lung. Thus, our results support a unique role for TRPV4 in -induced airway remodeling and warrant further studies in humans for it to be used as a novel therapeutic target in the treatment of asthma.-Gombedza, F., Kondeti, V., Al-Azzam, N., Koppes, S., Duah, E., Patil, P., Hexter, M., Phillips, D., Thodeti, C. K., Paruchuri, S. Mechanosensitive transient receptor potential vanilloid 4 regulates -induced airway remodeling 2 distinct pathways modulating matrix synthesis and degradation.
authors
publication date
- 2017
Additional Document Info
start page
- 1556
end page
- 1570
volume
- 31