Thrombospondin mediates focal adhesion disassembly through interactions with cell surface calreticulin Article (Faculty180)

cited authors

  • Goicoechea, S; Orr, A W; Pallero, M A; Eggleton, P; Murphy-Ullrich, J E

description

  • Thrombospondin induces reorganization of the actin cytoskeleton and restructuring of focal adhesions. This activity is localized to amino acids 17-35 in the N-terminal heparin-binding domain of thrombospondin and can be replicated by a peptide (hep I) with this sequence. Thrombospondin/hep I stimulate focal adhesion disassembly through a mechanism involving phosphoinositide 3-kinase activation. However, the receptor for this thrombospondin sequence is unknown. We now report that calreticulin on the cell surface mediates focal adhesion disassembly by thrombospondin/hep I. A 60-kDa protein from endothelial cell detergent extracts has homology and immunoreactivity to calreticulin, binds a hep I affinity column, and neutralizes thrombospondin/hep I-mediated focal adhesion disassembly. Calreticulin on the cell surface was confirmed by biotinylation, confocal microscopy, and by fluorescence-activated cell sorting analyses. Thrombospondin and calreticulin potentially bind through the hep I sequence, since thrombospondin-calreticulin complex formation can be blocked specifically by hep I peptide. Antibodies to calreticulin and preincubation of thrombospondin/hep I with glutathione S-transferase-calreticulin block thrombospondin/hep I-mediated focal adhesion disassembly and phosphoinositide 3-kinase activation, suggesting that calreticulin is a component of the thrombospondin-induced signaling cascade that regulates cytoskeletal organization. These data identify both a novel receptor for the N terminus of thrombospondin and a distinct role for cell surface calreticulin in cell adhesion.

publication date

  • 2000

published in

start page

  • 36358

end page

  • 68

volume

  • 275