The GSK3β inhibitor, TDZD-8, rescues cognition in a zebrafish model of okadaic acid-induced Alzheimer's disease Article (Faculty180)

cited authors

  • Koehler, Daniel; Shah, Z A; Williams, Fr E

description

  • Currently, no treatments exist that are able to directly treat against Alzheimer's disease (AD), and we are facing an inevitable increase in the near future of the amount of patients who will suffer from AD. Most animal models of AD are limited by not being able to recapitulate the entire pathology of AD. Recently an AD model in zebrafish was established by using the protein phosphatase 2A inhibitor, okadaic acid (OKA). Administering OKA to zebrafish was able to recapitulate most of the neuropathology associated with AD. Therefore, providing a drug discovery model for AD that is also time and cost efficient. This study was designed to investigate the effects of GSK3β inhibition by 4-benzyl-2-methyl-1, 2, 4-thiadiazolidine-3, 5-dione (TDZD-8) on this newly developed AD model. Fish were divided into 4 groups and each group received a different treatment. The fish were divided into a control group, a group treated with 1 μM TDZD-8 only, a group treated with 1 μM TDZD-8 + 100 nM OKA, and a group treated with 100 nM OKA only. Administering the GSK3β inhibitor to zebrafish concomitantly with OKA proved to be protective. TDZD-8 treatment reduced the mortality rate, the ratio of active: inactive GSK3β, pTau (Ser199), and restored PP2A activity. This further corroborates the use of GSKβ inhibitors in the treatment against AD and bolsters the use of the OKA-induced AD-like zebrafish model for drug discovery.

authors

publication date

  • 2019

published in

start page

  • 31

end page

  • 37

volume

  • 122