Effects of repeated high-dose methamphetamine and ceftriaxone post-treatments on tissue content of dopamine and serotonin as well as glutamate and glutamine Article (Faculty180)

cited authors

  • Althobaiti, Yu S; Almalki, Atia H; Das, Sujan C; Alshehri, Fahad S; Sari, Youssef

description

  • Repeated exposure to high doses of methamphetamine (METH) is known to alter several neurotransmitters in certain brain regions. Little is known about the effects of ceftriaxone (CEF), a β-lactam antibiotic, known to upregulate glutamate transporter subtype 1, post-treatment on METH-induced depletion of dopamine and serotonin (5-HT) tissue content in brain reward regions. Moreover, the effects of METH and CEF post-treatment on glutamate and glutamine tissue content are not well understood. In this study, Wistar rats were used to investigate the effects of METH and CEF post-treatment on tissue content of dopamine/5-HT and glutamate/glutamine in the nucleus accumbens (NAc) and prefrontal cortex (PFC). Rats received either saline or METH (10mg/kg, i.p. every 2h×4) followed by either saline or CEF (200mg/kg, i.p, every day×3) post-treatment. METH induced a significant depletion of dopamine and 5-HT in the NAc and PFC. Importantly, dopamine tissue content was completely restored in the NAc following CEF post-treatment. Additionally, METH caused a significant decrease in glutamate and glutamine tissue content in PFC, and this effect was attenuated by CEF post-treatment. These findings demonstrate for the first time the attenuating effects of CEF post-treatment on METH induced alterations in the tissue contents of dopamine, glutamate, and glutamine.

authors

publication date

  • 2016

published in

start page

  • 25

end page

  • 31

volume

  • 634