Abstract P149: Germ-free Rats Reveal An Obligatory Role Of Microbiota In Blood Pressure Meeting Abstract (Web of Science)


  • Elevated blood pressure or hypertension is the single largest risk factor for cardiovascular diseases which are the leading cause of human deaths. Current clinical management of blood pressure is focused on restoring homeostasis of the host alone, without accounting for commensal gut microbiota. Recent evidence from the CARDIA study in humans and multiple studies using animal models suggest that development of hypertension in the host is associated with alterations in microbiotal communities. Here we examined whether microbiota is necessary for blood pressure and vascular homeostasis by functional evaluation of the gut homeostasis, hemodynamic, and vascular function of gnotobiotic rats reconstituted with microbiota to represent the complete holobiont. Gnotobiotic rats were used to represent incomplete holobionts. To reconstitute complete holobionts, gnotobiotic rats were co-housed with conventionally-raised rats. Acquisition of microbiota was evaluated through monitoring of gross ceca and fecal samples by metagenomic 16S sequencing. BP was recorded and vascular, renal, hepatic, cardiac and gut features were assessed using histology and ex vivo myography. Markers of innate immune effectors (Immune cell population, level of Lcn2, Gut permeability) were used to examine the nature and extent of host immune cell processes concomitantly occurring along with observations of host hemodynamics. Compared to the reconstituted holobiont represented by the animals exposed to microbiota, the incomplete-holobiont represented by gnotobiotic rats, had significantly lower BP (SBP of germ free:109±8 mmHg, SBP of conventionalized:138±10mmHg * ) and vascular contractility responses to phenylephrine (Emax (mN): germ-free: 6.9±1.3, GFC: 11.7±0.7*). Acute exposure of the host to microbiota reconstituted gut microbiotal communities, significantly boosted their gut epithelial cell proliferation, innate immune function and restored vascular contractility. These data indicate that in addition to the dependency of the host on microbiota for essential bodily functions such as digestion of plant-derived complex carbohydrates, the host is also dependent on microbiota for maintaining blood pressure and vascular function


  • McCarthy, Cam
  • Mell, Blair
  • Yeo, Ji-youn
  • Golonka, Rachel
  • Yeoh, Beng San
  • Mandal, Juthika
  • Yang, Tao
  • Saha, Piu
  • Kumar, Matam Vijay
  • Joe, Bina

publication date

  • 2020

published in


  • 76


  • Suppl_1