Implication of transient receptor potential vanilloid type 1 in 14,15-epoxyeicosatrienoic acid-induced angiogenesis Article (Faculty180)

cited authors

  • Su, Kuo- H; Lee, Kuan- I; Shyue, Song- K; Chen, Hsiang- Y; Wei, Jeng; Lee, Tzong- S


  • 14,15-epoxyeicosatrienoic acid (14,15-EET) is implicated in regulating physiological functions of endothelial cells (ECs), yet the potential molecular mechanisms underlying the beneficial effects in ECs are not fully understood. In this study, we investigated whether transient receptor potential vanilloid receptor type 1 (TRPV1) is involved in 14,15-EET-mediated Ca(2+) influx, nitric oxide (NO) production and angiogenesis. In human microvascular endothelial cells (HMECs), 14,15-EET time-dependently increased the intracellular level of Ca(2+). Removal of extracellular Ca(2+), pharmacological inhibition or genetic disruption of TRPV1 abrogated 14,15-EET-mediated increase of intracellular Ca(2+) level in HMECs or TRPV1-transfected HEK293 cells. Furthermore, removal of extracellular Ca(2+) or pharmacological inhibition of TRPV1 decreased 14,15-EET-induced NO production. 14,15-EET-mediated tube formation was abolished by TRPV1 pharmacological inhibition. In an animal experiment, 14,15-EET-induced angiogenesis was diminished by inhibition of TRPV1 and in TRPV1-deficient mice. TRPV1 may play a crucial role in 14,15-EET-induced Ca(2+) influx, NO production and angiogenesis.


publication date

  • 2014

start page

  • 990

end page

  • 6


  • 10