Augmented rififylin is a risk factor linked to aberrant cardiomyocyte function, short-QT interval and hypertension Article (Faculty180)

cited authors

  • Gopalakrishnan, Kathirvel; Morgan, Eric E E; Yerga-Woolwine, Shane; Farms, Phyllis; Kumarasamy, Sivarajan; Kalinoski, Andrea; Liu, Xiaochen; Wu, Jian; Liu, Lijun; Joe, Bina

description

  • Using congenic strains of the Dahl salt-sensitive (S) rat introgressed with genomic segments from the normotensive Lewis rat, a blood pressure quantitative trait locus was previously mapped within 104 kb on chromosome 10. The goal of the current study was to conduct extensive phenotypic studies and to further fine-map this locus. At 14 weeks of age, the blood pressure of the congenic rats fed a low-salt diet was significantly higher by 47 mm Hg (P<0.001) compared with that of the S rat. A time-course study showed that the blood pressure effect was significant from very young ages of 50 to 52 days (13 mm Hg; P<0.01). The congenic strain implanted with electrocardiography transmitters demonstrated shorter-QT intervals and increased heart rate compared with S rats (P<0.01). The average survival of the congenic strain was shorter (134 days) compared with the S rat (175 days; P<0.0007). The critical region was narrowed to <42.5 kb containing 171 variants and a single gene, rififylin. Both the mRNA and protein levels of rififylin were significantly higher in the hearts of the congenic strain. Overexpression of rififylin is known to delay endocytic recycling. Endocytic recycling of fluorescently labeled holotransferrin from cardiomyocytes of the congenic strain was slower than that of S rats (P<0.01). Frequency of cardiomyocyte beats in the congenic strain (62±9 bpm) was significantly higher than that of the S rat (24±6 bpm; P<0.001). Taken together, our study provides evidence to suggest that early perturbations in endocytic recycling caused by the overexpression of Rffl is a novel physiological mechanism potentially underlying the development of hypertension.

publication date

  • 2011

published in

start page

  • 764

end page

  • 71

volume

  • 57