Synthesis of α-L-rhamnosyl ceramide and evaluation of its binding with anti-rhamnose antibodies Article (Faculty180)

cited authors

  • Long, David E; Karmakar, Partha; Wall, K A; Sucheck, Steven J

description

  • An α-L-rhamnosyl ceramide (1, α-L-RhaCer) has been prepared that was recognized by anti-L-rhamnose (anti-Rha) antibodies. During these studies we explored the use of an α-L-rhamnosyl thioglycoside and a trichloroacetimidate as a glycosyl donors. Subsequently, the acceptors desired for glycosylation, 3-O-benzoylazidosphingosine or 3-O-alloxycarbonylsphingosine, were prepared from D-xylose. The thioglycoside donor, 2,3,4-tri-O-acetyl-1-(4-tolyl)thio-α-L-rhamnopyranoside, and the trichloroacetimidate donor, 2,3,4-tri-O-acetyl-1-(2,2,2-trichloroethanimidate)-α-L-rhamnopyranoside, were synthesized in 50% and 78% yield overall, respectively. The synthesis of the glycosylation acceptor employed an addition-fragmentation olefination that was successfully carried out in 53% yield. With the successful synthesis of key intermediates, α-L-RhaCer (1) was prepared without any insurmountable obstacles. Anti-Rha antibodies were prepared in BALB/c mice by immunizing them with rhamnose-ovalbumin (Rha-Ova) with Sigma Adjuvant System (SAS) and the anti-L-Rha antibodies were isolated from the blood sera. Liposomes and EL4 tumor cells were used as model systems to demonstrate the ability of 1 to insert into a lipid bilayer. The interaction of the liposomes or the EL4 cells with α-L-RhaCer (1) and anti-Rha antibodies were investigated by fluorescence microscopy and flow cytometry, respectively, to confirm the ability of glycolipid 1 to be displayed on the tumor cell surface as well as the ability to be recognized by anti-Rha antibodies.

publication date

  • 2014

published in

start page

  • 5279

end page

  • 89

volume

  • 22