Soil respiration response to prescribed burning and thinning in mixed-conifer and hardwood forests Article (Web of Science)

abstract

  • The effects of management on soil carbon efflux in different ecosystems are still largely unknown yet crucial to both our understanding and management of global carbon flux. To compare the effects of common forest management practices on soil carbon cycling, we measured soil respiration rate (SRR) in a mixed-conifer and hardwood forest that had undergone various treatments from June to August 2003. The mixed-conifer forest, located in the Sierra Nevada Mountains of California, had been treated with thinning and burning manipulations in 2001, and the hardwood forest, located in the southeastern Missouri Ozarks, had been treated with harvesting manipulations in 1996 and 1997. Litter depth, soil temperature, and soil moisture were also measured. We found that selective thinning produced a similar effect on both forests by elevating SRR, soil moisture, and soil temperature, although the magnitude of response was greater in the mixed-conifer forest. Selective harvest increased SRR by 43% (from 3.38 to 4.82 µmol·m–2·s–1) in the mixed-conifer forest and by 14% (from 4.25 to 4.84 µmol·m–2·s–1) in the hardwood forest. Burning at the conifer site and even-aged harvesting at the mixed-hardwood site did not produce significantly different SRR from controls. Mean SRR were 3.24, 3.42, and 4.52 µmol·m–2·s–1, respectively. At both sites, manipulations did significantly alter SRR by changing litter depth, soil structure, and forest microclimate. SRR response varied by vegetation patch type, the scale at which treatments altered these biotic factors. Our findings provide forest managers first-hand information on the response of soil carbon efflux to various management strategies in different forests.

authors

  • Concilio, Amy
  • Ma, Siyan
  • Li, Qinglin
  • LeMoine, James
  • Chen, Jiquan
  • North, Malcolm
  • Moorhead, Daryl L
  • Jensen, Randy

publication date

  • 2005

number of pages

  • 10

start page

  • 1581

end page

  • 1591

volume

  • 35

issue

  • 7