ABSTRACTThe phosphoprotein (P protein) of vesicular stomatitis virus (VSV) is an essential subunit of the viral RNA-dependent RNA polymerase complex and plays a central role in viral transcription and replication. Using both the yeast two-hybrid system and coimmunoprecipitation assays, we confirmed the self-association of the P protein of Indiana serotype (Pind) and heterotypic interaction between Pind and the P protein of New Jersey serotype (Pnj). Furthermore, by using various truncation and deletion mutants of Pind, the self-association domain of the Pind protein was mapped to amino acids 161 to 210 within the hinge region. The self-association domain of Pind protein is not required for its binding to nucleocapsid and large proteins. We further demonstrated that the self-association domain of Pind protein is essential for VSV transcription in a minireplicon system and that a synthetic peptide spanning amino acids 191 to 210 in the self-association domain of Pind protein strongly inhibited the transcription of the VSV genome in vitro in a dose-dependent manner. These results indicated that the self-association domain of Pind protein plays a critical role in VSV transcription.