Estimating the Effects of Anthropogenic Modification on Water Balance in the Aral Sea Watershed Using GRACE: 2003–12 Article (Web of Science)

abstract

  • Abstract The decrease in size the Aral Sea in central Asia, seen as both lower water levels and reduction in areal extent, has been one of the greatest examples of anthropogenic modification of a natural system in recent history. Many studies have monitored the extent and rate of this water loss and provided estimates on the expected life span of the remaining water. However, with little data for groundwater monitoring in the post-Soviet era, it is unclear what the water balance currently is in the remainder of the watershed. Redistribution of water upstream in the watershed including damming to create reservoirs and groundwater recharge from irrigation has not only deprived the sea of water but also increased evapotranspiration and altered local climate patterns. Using Tropical Rainfall Measurement Mission (TRMM) and Global Precipitation Climatology Centre (GPCC) data, rainfall trends for the Aral Sea watershed were analyzed over 10- and 30-yr periods and only minimal changes in rainfall were detected. Using Gravity Recovery and Climate Experiment (GRACE) gravity data from 2003 to 2012, trends in equivalent water mass were determined for the entire watershed. Estimates show up to 14 km3 of equivalent water mass has been lost from the watershed annually from 2002 to 2013. The mass loss throughout the basin is most likely attributable to increased evapotranspiration due to the inefficient irrigation systems and other human modification increasing the need for international cooperation and conservation programs to minimize negative impacts throughout the region.

authors

publication date

  • 2014

published in

number of pages

  • 15

start page

  • 1

end page

  • 16

volume

  • 18

issue

  • 3