Load Sharing Among Spinal Elements of a Motion Segment in Extension and Lateral Bending Article (Web of Science)


  • A linear optimization model was formulated using a semi-experimental protocol to estimate the forces in the spinal elements of a lumbar motion segment subjected to an extension or lateral bending moment with and without a 120 N compressive preload. A morphometer was used to acquire the three-dimensional locations of the disk center, facet centers and ligament origin and insertion sites with the specimen in a “neutral” position. The relative motion of the superior vertebra, under the loading conditions tested, was monitored using a Selspot II® system. These data allowed the formulation of the static equilibrium equations for the superior vertebra at each of the loading conditions mentioned above. A linear optimization technique was used, along with a suitable cost function, to find an optimum solution for the set of equations and imposed constraints. Results showed that for 6.9 Nm of extension moment, each facet carried a load of 52 N, with the disk carrying an axial tensile load of 104 N. At the 6.9 Nm extension moment coupled with 120 N preload, each facet carried a load of 77.2 N and the disk an axial tensile load of 37 N. In right lateral bending, with and without preload, the load was distributed among the right facet, the disk, the left ligamentum flavum and the left capsular ligament. At the 6.9 Nm load step without preload the right facet carried an axial load of 127.01 N with the disk carrying an axial compressive load of 7.8 N. Ligament forces for this step for the left ligamentum flavum and capsular ligament, respectively, were 61.03 N and 65.14 N. The addition of 120 N of preload reduced the load on the right facet to 83.5 N. The compressive load in the disk increased to 107.5 N. The corresponding ligament forces were 43.2 N (left ligamentum flavum) and 50.7 N (left capsular ligament).


  • Winterbottom, J. M.
  • Weinstein, J. N.
  • Kim, Y. E.

publication date

  • 1987

number of pages

  • 6

start page

  • 291

end page

  • 297


  • 109


  • 4