3-D Anatomically Based Dynamic Modeling of the Human Knee to Include Tibio-Femoral and Patello-Femoral Joints Article (Web of Science)


  • An anatomical dynamic model consisting of three body segments, femur, tibia and patella, has been developed in order to determine the three-dimensional dynamic response of the human knee. Deformable contact was allowed at all articular surfaces, which were mathematically represented using Coons’ bicubic surface patches. Nonlinear elastic springs were used to model all ligamentous structures. Two joint coordinate systems were employed to describe the six-degrees-of-freedom tibio-femoral (TF) and patello-femoral (PF) joint motions using twelve kinematic parameters. Two versions of the model were developed to account for wrapping and nonwrapping of the quadriceps tendon around the femur. Model equations consist of twelve nonlinear second-order ordinary differential equations coupled with nonlinear algebraic constraint equations resulting in a Differential-Algebraic Equations (DAE) system that was solved using the D_ifferential/A_lgebraic S_ystem S_ol_ver (DASSL) developed at Lawrence Livermore National Laboratory. Model calculations were performed to simulate the knee extension exercise by applying non-linear forcing functions to the quadriceps tendon. Under the conditions tested, both “screw home mechanism” and patellar flexion lagging were predicted. Throughout the entire range of motion, the medial component of the TF contact force was found to be larger than the lateral one while the lateral component of the PF contact force was found to be larger than the medial one. The anterior and posterior fibers of both anterior and posterior cruciate ligaments, ACL and PCL, respectively, had opposite force patterns: the posterior fibers were most taut at full extension while the anterior fibers were most taut near 90° of flexion. The ACL was found to carry a larger total force than the PCL at full extension, while the PCL carried a larger total force than the ACL in the range of 75° to 90° of flexion.


publication date

  • 2004

number of pages

  • 9

start page

  • 44

end page

  • 53


  • 126


  • 1